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SPHEROMAK TILTING INSTABILITY IN CYLINDRICAL GEOMETRY

I. INTRODUCTION AND SUMMARY

L)- The compact torus, or lmi specifically".spheromak, approach to mag-

netic fusion has numerous advantages as a reactor over tokamak designs.

Most important of these are relative compactness, the fact that a

toroidal blanket is not necessary, and the absence of external toroidal

field coils.\ The last of these can be expressed by saying that the

engineering beta (ratio of plasma pressure to magnetic pressure at the

coils) can be quite high.

1?
Recentlytheoretical work by Rosenbluth and Bussac' has shown that

a spheromak plasma in a tight fitting spheroidal shell is unstable to a

magnetohydrodynamic mode which they call the internal tilting mode if

the boundary is slightly elongated, i.e. prolate.

Moreqrecently, a spheromak-type configuration has been formed at

the University of Maryland by a combination of Z-pinch and theta pinch

.3
technologies. Although the spherical wall equilibrium of Ref. 2 des-

cribes this device in a qualitative fashion, a more appropriate theoret-

ical model for the Maryland device is an equilibrium with cylindrical

conducting walls and endplates. In addition, we feel that it is of value

to show that the tilting instability is not specific to systems with

conducting walls that are almost spherical. Detailed comparison of the

Manuscript submitted July 29, 1980
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model with the experimental device and the observed tilting instability

with the theory has been presented elsewhere. In this paper we describe

in more detail two of the theoretical approaches used and their justifi-

cation.

Our first approach, discussed in Secs. II and III is that taken in
Ref. 2 for the spherical geometry, namely the Woltjer-Taylo6 approach

of computing nonaxisymmetric force free equilibria. We show in Sec. II

that the existence of nonaxisymmetric equilibria with eigenvalue less

than that of the axisymmetric equilibrium is a necessary and sufficient

condition for instability if no mode rational surface occurs in the

plasma. Our geometry, in which the normal component of the magnetic

field is required to be zero on cylindrical walls of radius r = a and

length Z = L, is inherently more difficult than that of Ref. 2 , where

expansions can be performed about an analytically tractable spherical

boundary. Nevertheless, we are able to compute nonaxisymmetric equili-

bria for every value of elongation L/a. Our results show that an in-

stability with m = 1 (perturbed quantities behave as e , where 0 is

the toroidal angle) occurs for L/a > 1.67 - 1%. We identify this as the

tilting mode. Furthermore, it appears that a second m = 1 instability

occurs for L/a > 4.14, but this mode appears to have a smaller growth

rate than the tilt. We also find that the n = 2, 3, and 4 equilibria

as well as those with m - - have higher energy than the axisymmetric

equilibrium, implying that all modes except m = 1 are stable.

Our second approach, discussed in Sec. IV, is by means of a linear-

ized time dependent modified magnetohydrodynamic code written

for force free geometries. The results of this code, specifically the
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marginal stability point for the m 1 tilting mode, agree to within

a percent with the equilibrium analysis.

Nonaxisymmetric force free equilibria for this geometry have been

computed by a somewhat different method by An, et al. 7 This paper and

Ref. 7 were both motivated by results of Marklin8 and of An.9 Marklin 1
utilized a linearized time dependent magnetohydrodynamic code which

yielded tilting instability for L/a > 1.67 and also showed the

existence of an unstable m - 1 internal kink mode when the safety

factor q is greater than unity on mag axis. on the other hand, the

work of An9 showed that nonaxisymmetric force free equilibria

corresponding to the tilting mode are not obtainable by the method

of separation of variables. As shown in Sec. III and Ref. 7,

however, nonaxisymmetric solutions yielding Marklin's tilting mode

result 8 do, in fact exist, but are not separable.
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i
II. THE TAYLOP-WOLTJER APPROACH

The Taylor-Woltjer approach is based upon extremizing the magnetic

energy W = j B2 d3x with K = J A-B d 3x held constant. The quantity,

K, which is an invariant of motion of ideal magnetohydrodynamics, is

called the magnetic helicity. Introducing a Lagrange multiplier p for

the constraint, the tirst variation of W -p K/2 gives

where p is a constant. For this special class of force free equilibria,

we have VxA = p4A + VX, from which we find W = p K/2. (We need not con-

sider the complications that arise in a system in a toroidal container
1 0

because our system is simply connected.) Therefore, the solution to (1)

with the smallest value of p will have the lowest energy and might be

expected to be stable. We shall see later that p may be assumed to be

positive. We cannot expect this analysis to extend into a vacuum region,

where K is not conserved. Just as obviously, (1) cannot be satisfied in

a vacuum. We therefore restrict our attention to internal modes, i.e.

we assume that there is a conducting wall at the plasma boundary, r = a

and z = 0, z = L.

Indeed, the second variation of W - K/2 is

6W* =.(6B 2p6A - 6B) d3 x. (2)

It is easily seen that the usual potential energy 6W of linearized ideal

magnetohydrodynamics for equilibria satisfying (1) and with zero pres-

sure is exactly 6W*, but with the added condition that the perturbed

vector potential must be expressed in the form of a plasma displacement

L.4



as 6A = x B. Therefore the ideal magnetohydrodynamic energy principle

is expressed in terms of 6W* with the added constraint B.6A = 0. This

implies 6W 2 6W*, which guarantees that the condition 6W* > 0 is suffi-

cient for ideal magnetohydrodynamic stability. Also, it is shown in the

Appendix that the condition B.6A = 0 can be satisfied by a gauge trans-

formation except at a mode rational surface. Therefore, if no mode

rational surface occurs in the plasma, 6W* = 6W and we have a necessary

and sufficient condition for stability.

We shall see that all solutions of (1) may be considered to have

only one Fourier component e i re s  [Incidentally, the transformation

m- -m, B8-' -B0,i P leaves (1) invariant, proving that p can be

assumed to be positive.] This property also holds for the normal modes

in the system whose fields are given by the axisymmetric (m = 0) solu-

tion to (1). Therefore, if there exists a solution 6B of (1) with eigen-

value P, we have 6B = A (plus a gradient), from which we conclude that

6W* = - j 2  
. (3)

Therefore, if p is less than the eigenvalue L of the axisymmetric solu-

tion of (1), and if no mode rational surface (i.e. where mq is an integer,

where q is the usual safety factor) exists in the plasma, the axisymmet-

rnc equilibrium is unstable. We prove in the Appendix that the usual

boundary condition at a conducting wall at the edge of the plasma,

A
nx5A = 0, is easily satisfied by a gauge transformation which is compati-

ble with the gauge in which B • 6A = 0.

Finally we can prove that the solution of (1) with minimum eigen-

value p is stable. If we assume for contradiction that this minimum
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energy state is unstable, it follows that there exists some trial func-
8W/6B 2 d3 x,

tion 6A for which 6W" is negative. Then, minimizing X 6W*/ 3

we find that VxSB = po/(I - X)6B, where X < 0 by assumption. But K

0 (i - X) < Poll which is a contradiction. b
Taylor's celebrated assertion6 that the stability of resistive I

modes can be determined by computing the energy (i.e. the eigenvalue

P) of nonaxisymmetric states is equivalent to the assertion that 6W"

without constraint is the relevant energy principle for resistive modes.

While this is an intriguing proposition, we shall see that there is no

need to invoke it, because the tilting mode (m = 1) becomes unstable

for parameters with which no mode rational surface exists.

6[ , ,



III. SOLUTION BY SERIES EXPANSION

Proceeding to obtain solutions of (1), we invoke the representa-

12tion

AA

tinB =x + l/l.± Vxzx* (4at)~

which satisfies (1) if is a solution of the scalar Helmholtz equation

(V, + P~ 2i 0. The boundary conditions B =0 at r a and B =0 at

z 0, z L, become

im + rz = 0 at r = a (5a)
r P ± o

2
al + at z = 0, z =L. (5b)
az 2

Proceeding by the method of separation of variables, we find that solu-

tions of the differential equation with condition (5b) are of the form

00

E A J (k'r) sinkz ei h + A rmei eiz (6)
n m rn=l

where k' = k 2) and k =- nTT/L. [The Bessel function is understood

to mean I ( J7 _ 2 r) for k > p..] The last term in (6) has B identi-m z

cally equal to zero, and therefore trivially satisfies (5b). Now,

imposing (5a) we have the condition

CO 00
im Z A J (k'a)sin kz 1 . A kk'Jm(k'a)cos kz
a n nm n=1

-2imA am- 1 e = 0 (7)
0

for all z between 0 and L. We have also started directly from the three

7



components of (1) and obtained (7), showing that the representation (4)

contains all solutions of (1) satisfying the boundary conditions which

we impose.

For m = 0 we find that only one coefficient A is nonzero andn

k'a = R the 1'th zero of J Thus we have

= (n2 1 2 /L 2 + j/a ) (8a)

= (p/k') J (k'r) sin (nnz/L), (8b)

B -k J (k'r) cos(nn z/L), (8c)
r 1

Be = J (k'r) sin(nT z/L), (8d)

Bz = k' J (k'r) sin(nn z/L). (8e)

The term in (6) proportional to A does not contribute to P for m 0.
0

The axisymmetric equilibrium with the smallest eigenvalue 4(hence the

lowest energy) has I = n = 1. The flux surfaces for this state are

shown in Fig. 1. The poloidal flux is

r% = rJ1(Jllr/a) sin(rrz/L), (9)

and the safety factor q - (B.VO/B.Vr)dr equals

r

2
dr 2 2 (10a)

r 1J r r2Jl(jllr/a )2  r 2A 20
[re

8t
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TT2 f F lJl(4\ 2p~ A2]1/(1b

Pl

where r1 and r2 are the two points where the flux surface crosses the

midplane z = L/2, p = r/a, and @ = rA/a is the normalized flux. From

(lOb) it is easily seen that q factors into a product of a term depend-

ing on the normalized flux and another term dependent on only the

elongation L/a. That is, q(rA ) is self similar for every L/a. Further-

more, we have shown that q decreases monotonically with distance from

the magnetic axis and that

= /4k = (1 + Jl,2L2/l" 2a2)/4, (lla)

q sa =  4qs/o,1 - q s/0.6, (llb)

where q is evaluated at the separatrix rA = 0 and qa is evaluated at

the magnetic axis, and is the first zero of Jo. The q profile

monotonically increases with L/a (because the poloidal connection length

increases) and the q = 1 surface first appears at the magnetic axis for

L/a = 1.793. Notice that our model has somewhat more shear than the

spherical model of Ref. 2.

For m /0, Eq. (7) cannot be satisfied by a single n, because J andm

J' cannot both be zero for the same argument. Similarly, a finite set
m

of nonzero A cannot satisfy (7) because any such finite set of trigono-n

metric functions are linearly independent. Finally, we observe that tne

9



infinite set of functions sin(nr z/L), cos(nnz/L) are not linearly

independent. An obvious way to approach (7) is to expand coskz and eip z

in a sin series, i.e. extending all functions to be odd on the interval

-L < z < L. These expansions have Fourier coefficients that decrease as
-1
n . We use finite elements rather than sin functions as basis functions

to avoid these convergence problems. That is, we truncate the series

(7) at n = N, producing a set of equations with 2N + 2 real unknowns

(since A0, Al, .... AN are complex). We then evaluate (7) at 2N + 2

points in the interval 0 < z < L. The resulting (2N+2) x (2N+2) matrix

is a complicated function of the eigenvalue p. We compute numerically

the determinant d(p) as a function of p±. This determinant exhibits

nonphysical roots d(vi) - -nI iLV2 +m. This is because, as p-nn /L,

the e I z solution of (6) is redundant [leading to two pairs of identi-

cal columns in the matrix] and because Jm(k'a) - k'J'(k'a-(p-nT /L)m
/2

[there are two columns proportional to this factor.] The other roots of

dp) are double roots, due to the symmetry 9-6 + ri/2m [which exchanges

real and imaginary parts of A0, A1 ,...,AN.] The determinant d(p ) does

not reach zero for finite N. For N = 10,d(pl ) exhibits fairly sharp

dips down to 10-2 compared to neighboring values. For N = 15, the dips

are more pronounc, d, around 10- . This shows that quite a few Fourier

harmonics are necessary to describe the solution accurately. The com-

plexity of these eigenfunctions, in particular the fact that they are

not separable, is related to the fact that (5) represents an unconven-

tional set of boundary conditions for an elliptic equation.

In Fig. 2 we show the first two physical roots for m = 1 and the

first root (8a) for m 0, as a function of the elongation L/a. There

10
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are crossings at L/a = 1.67 and L/a 4.14. Since no mode rational sur- U

face q = n exists for L/a < 1.793 (the maximum q at L/a = 1.67 is 0.944)

this implies that all m = 1 modes are stable for 0 < L/a < 1.67 and that

an m = linstability exists for 1.67 < L/a < 1.793. The second crossing,

which occurs when the q = 2 surface is present (q has the range 1.29 <

q < 2.14) indicates but does not prove the existence of another m = 1 H
instability. There does not seem to be a further crossing of the two

m = 1 states, azd therefore we believe that the first m = 1 mode is

always dominant in terms of growth rate and saturation amplitude. Be-

cause this mode has similar structure to that of Rosenbluth and Bussac

in spherical geometry, and because it becomes unstable at a similar

elongation and when no mode rational surface exists, we refer to this

as the tilting mode.

The lowest eigenvalues for the m = 2, 3, and 4 modes, as well as

for m = 0 are shown in Fig. 3. Since there is no crossing with the

lowest m = 0 eigenvalue, it follows that there are no m = 2, 3 or

instabilities. [Note that, as L/a - 0, the second term of (7) becomes

dominant, indicating that the eigenvalue p should become independent

of m in this limit. The results of Fig. 2 and 3 show that this is in-

deed the case.] Furthermore, for m - and A = 0, (7) is satisfied0

2 2 2 2 2 31
with a single nonzero An, giving p (n TT /L + jn/a ) . The lowest

energy state has n = I = 1. The m = 4 results of Fig. 3 agree with

this value within a few percent and we therefore conclude that the

axisymmetric equilibrium (8) is unstable only to m = 1 modes.

p,,'-



IV. LINEARIZED CODE

Here we present an alternate approach to that of Sec. III. First,

notice that the linearized equation of motion of ideal magnetohydrody-

namic for force free equilibria

2 2
p a2/bt = 6j xB + x 6B (12)

takes the form

(p/B 2 ) ( )2/at216A = (I6iB - 62) (13)

for equilibria satisfying (1), where 6A x B and . signifies the

components perpendicular to the equilibrium field B. Thus we may con-

sider 6A and not e our basic dependent variable; clearly B'6A = 0 for

all time if B.6A and (6/6t)B.6A are both zero at t = 0. This set of

equations, of course, has a variational principle with 6W*, with

normalization T J' d 3 x p6IbAI 2 /B 2 and with constraint B-6A = 0. The

modified set of equations

(p/B2 )(2/at 2 ) 6A = p6B - 61 (14)

has the same variational principle but without the constraint. As dis-

cussed in Sec. II, the stability criterion obtained by integrating (13)

or (14) must be identical if no mode rational surface exists in the

plasma. Furthermore (14) has the advantage of producing nonaxisymmetric

solutions to (14) at marginal stability. [Taylor's assertion6 mentioned

earlier, is therefore equivalent to the statement that tearing modes are

12
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stable in an axisymmetric system satisfying (1) if and only if (14) is

stable, regardless of the existence of mode rational surfaces.]

Our code integrates (14) in time until one unstable mode if any

dominates all others. Runs are terminated when the growth rate, based

upon the kinetic energy, varies by less than a percent. Results from

2=
a series of such runs with normalization p/B = const. are shown in

Fig. 4, for m = 1. The marginal stability point at L/a t- 1.65 agrees

well with that shown on Fig. 2. The perturbed magnetic field of this

unstable mode near marginal stability (L/a = 1.75) is shown in Fig. 5.

Notice that the real part of 6Br (i.e. the cosm component) looks

like a pure sine wave as a function of z, but with a period slightly

less than L, whereas the imaginary part of 6B (i.e. the -sinmr

component) seems to be a combination of sin(lz/L) and cos (27rz/L).

The other components of 6P also show a complex structure of Fourier

harmonics in z, including aperiodic behavior. See especially the

imaginary part of 6B., which seems to have a period 1.16 L. This is

to be expected since the m = I solutions to (7) contain many harmonics

as well as the anharmonic component proportional to e

13
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APPENDIX

Our purpose here is to prove the two propositions of Sec. II. The

first is that a gauge transformation can be found so that 6A is normal,
A

i.e. n x 6A = 0 on the boundary, if the volume is simply connected and

if n. 6B = 0 on the boundary. The second proposition is that the con-

straint B.6A = 0 can be satisfied throughout the plasma if no mode

rational surface exists in the plasma (as is the case in the neighbor-

hood of marginal stability for the tilting mode).

To prove the first proposition, we ask whether there is a scalar

A A

function X such that t.VX = -t'6A = 0 on the boundary. Assuming X= 0

at some reference point x on the boundary, we find

X(x) = L U.

The function x so defined is single valued because the integral over a

closed path equals the magnetic flux through that part of the boundary

encircled by the path.

To prove the second proposition, we must find another scalar func-

A

tion X that satisfies B.V = -B-6A (where n x 6A = 0 is now assumed at

the boundary). Writing B V x VO + g(i)VO ( i; now the poloidal flux

rA)we find
1 + ( = -B'6A , (A.1)
J 64) 2 60 - ~

r

where p is a coordinate along the flux surfaces i = const., and J is the

1 2
Jacobian (V tOxVOp)_ . We can always assume J = r K(4), where

K(*) = (1/2 T) d/(r 2 B ) and B is the magnitude of the poloidal field,p p



and that cpvaries from 0 to 2T . Also, since 6A- e , we can assume

im 6X =  (#, ) e m S . (It is also possible to add an arbitrary function of

,.) Substituting in (A.1), we find

ax/a0 + imq( = -r 2K( )B.6A, (A.2)

where q(*) g( )( ) is the safety factor (i/2T) (B.7 0)d O /(B'VgO)

Expanding X and the right hand side of (A.2) as

n1=-o

and

Eo f n 1- n  0

n

and substituting in (A.2), we find

Xn() = i f()/(n - mq()). (A.3)

If * = 0o is a mode rational surface, i.e. has n - mq(4o) = 0 for some

n, we must have fn ( o0) = 0. If no mode rational surface exists, on the

other hand, there is no constraint on 6A, i.e. on the coefficients f (W),
n

It is obvious that this second gauge transformation does not destroy the

property guaranteed by the first. We wish to emphasize that these two

properties are general and do not depend upon B being a solution of (1).

16
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FMg. 2 - Normalized eigenvalue IAL/r as a function of elongation L/a for the lowest
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L/a - 1.67 and at L/a -4.14
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Fig. 4 - Normalized growth rate ~y = Iw IL/VA for the most unstable mode of
the system (14) with m =1, as a function of elongation L/a, showing marginal
stability at L/a 1.65
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Fig. 5 - Magnetic fields produced by the m = 1 tilting instability from (14) near
marginal stability (L/a = 1.75). Respectively, these are the real and imaginary parts
of 6 Br (a,b), of 5B 0 (c,d) and of 5B z (e,f). For the solid curve the horizontal axis
represents r (at z = L/2) and the zero point is marked on the left hand vertical axis.
For the dashed curve the horizontal axis represents z (at r = a/2) and the zero point
is marked on the right hand vertical axis. The scale of 6B is arbitrary.
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